师资队伍

教师名录

颜志淼

工程力学系

电子邮件:zhimiaoy@sjtu.edu.cn
通讯地址:木兰楼B722

2020年8月-至今,学院,长聘教轨副教授(Associate Professor),博导

2022年11月-至今,学院,工程力学系副主任(负责研究生教学)

2018年11月-2020年7月,学院,长聘教轨助理教授(Assistant Professor)

2016年3月-2018年11月,哈尔滨工业大学航天学院,讲师
2015年1月-2016年3月,美国Virginia Tech,博士后
2012年1月-2014年12月,美国Virginia Tech,工程力学,博士
2008年9月-2011年7月,重庆大学土木工程,硕士
2004年9月-2008年7月,重庆大学土木工程,本科

力学超材料,扑翼微型飞行器,声学超材料,智能超材料和结构,非线性振动与控制,流固耦合

AIAA会员,中国力学学会会员
SCI期刊审稿人,包括Smart Materials and Structures, Nonlinear Dynamics, International Journal of Mechanical Science, Energy, Applied Physics Letters, Journal of Energy Engineering, Communications in Nonlinear Science and Numerical Simulations, Energy Conversions and Management, IEEE Access, Journal of Intelligent Materials Systems and Structures, Journal of Engineering Mechanics等。

[1] 2023.1-2024.12 ‘深蓝计划’基金面上项目,全向宽流速压电-电磁混合式海浪俘能机构设计与原样传感功能研究

[2] 2021.5-2021.10 课题负责福清核电项目,XXX主给水泵液力耦合器国产化可行性研究

[3]2020.1-2021.8 子课题负责中国核动力研究院研究项目, 螺旋盘管在铅锚流体作用下的流致振动机理研究

[4]2020.12-2021.6 子课题负责中国船舶重工711研究项目, 含缺陷曲轴疲劳极限分析

[5]2020.1-2022.12 主持国家自然科学基金青年基金,基于尾流驰振的低速水流压电能量采集器分岔机理及性能研究
[6] 2019.7.1-2022.6.30 主持上海市自然科学基金面上项目,压电自参数吸振器目标能量转移机理和非线性振动控制研究
[7] 2019-2021长聘教轨助理教授科研启动项目,折纸超材料力学性能分析
[8] 2018.6-2019.6,主持学院船舰设备噪声与振动控制技术国防重点学科基金,船舶设备被动/半主动压电自参数吸振器理论与实验研究
[9] 2018.6-2018.12,主持中国博士后科学基金特别资助,2018T110283,驰振压电能量采集系统机电解耦及优化设计研究
[10] 2017.6-2018.12,主持中国博士后科学基金面上项目(一等),2017M610202,舞动压电风能采集器外接交流与直流电路系统建模与优化
[11] 2017.1-2018.12,主持哈尔滨工业大学国防重点实验室基金,HIT.KLOF.2016.072,高超音速飞行器颤振分析与被动控制
[12] 2009.08-2016.12,参与美国空军实验室与弗吉尼亚理工合作研究基金项目,Multidisciplinary Analysis and Design of Future Aerospace Vehicles

发表一作或通讯50篇SCI期刊论文

 

(* represents corresponding author)

2023

67. Scarab Beetle‐Inspired Embodied‐Energy Membranous‐Wing Robot with Flapping‐Collision Piezo‐Mechanoreception and Mobile Environmental Monitoring

Hou K.Y., Tan T., Wang Z.M., Wang B.L., Yan Z.M.*, Advanced Funcitonal Materials, 2023, 2303745.

66. A reprogrammable mechanical metamaterial with origami functional-group transformation and ring reconfiguration
Hu X.Y., Tan T., Wang B.L., Yan Z.M.*. Nature Communications, 2023, 14, 6709.  
65. Enhanced multi-band acoustic energy harvesting using double defect modes of Helmholtz resonant metamaterial
Xiao H.J., Tan T., Li T.R., Zhang L., Yuan C.L., Yan Z.M.*. Smart Materials and Structures, 2023, 32, 105030.
64.A Metamaterial Computational Multi-sensor of Grip-strength Properties with Point-of-care Human-computer Interaction
Chen Y.H., Li  T.R., Wang Z.M., Yan Z.M., De Vita R., Tan T.. Advanced Science, 2023, 2304091. DOI: 10.1002/advs.202304091.
63.Hybrid Artificial Muscle: Enhanced Actuation and Load-Bearing Performances via Origami Metamaterial Endoskeleton
Tian B.Y., Yan Z.M., Li Q., Hu X.Y. and Tan  T.. Materials Horizons, 2023, 10, 2398-2411.
62.  Broadband omnidirectional piezoelectric–electromagnetic hybrid energy harvester for self-charged environmental and biometric sensing from human motion
Wang Z.M., Chen Y.H., Jiang R.J., Du Y., Shi S.H., Zhang S.M., Yan Z.M., Lin Z.L., Tan T., Nano Energy, 2023, 108526.
61. Reprogrammable acoustic metamaterials for multiband energy harvesting.
Liu Y.Y., Zhao D.L., Yan Z.M., Sun W.P., Guo P.Y., Tan T.. Engineering Structures, 288, 2023, 116207.

60. Metamaterial based piezoelectric acoustic energy harvesting: Electromechanical coupled modeling and experimental validation

Xiao H.J., Li T.R., Zhang L., Liao W.H., Tan T., Yan Z.M.*. Mechanical Systems and Signal Processing, 2023, 185: 109808.

59. Revised method of multiple scales for 1:2 internal resonance piezoelectric vibration energy harvester considering the coupled frequency

Nie X.C., Tan T., Yan Z.M.*, Yan Z.T.*, Wang L.Z., Communications in Nonlinear Science and Numerical Simulation, 2023, 118: 107018


2022

58. Enhanced metamaterial vibration for high-performance acoustic piezoelectric energy harvesting

Sun W.P., Zhong K.X., Liu Y.Y., Xiao H.J., Zhao D.L., Yan Z.M., Tan T., Composites Communications, 2020, 35:101342

57. Symmetry-breaking self-sustained oscillation in nonlinear two-phase flow

Shi G.W., Tan T., Xiao Y., Zhang W., Zhu Y.F., Yan Z.M.*,  International Journal of Heat and Mass Transfer, 2022, 199: 123480

56.  Bistable programmable origami based soft electricity generator with inter-well modulation.

Huang C.L., Tan T., Wang Z.M., Nie X.C., Zhang S.M., Yang F.P., Lin Z.L., Wang B.L., Yan Z.M.*. Nano Energy, 2022, 103: 107775.

55. Bio-inspired programmable multi-stable origami.

Huang C.L., Tan T., Hu X.Y., Yang F.P., Yan Z.M.*.  Appl. Phys. Lett., 2022, 121, 051902

54 Topological imbalanced phononic crystal with semi-enclosed defect for high-performance acoustic energy confinement and harvesting.

Zhang L., Tan T., Z Yu Z.Y., Yan Z.M.*. Nano Energy, 2022, 100: 107472.

53 Nonlinear 1:2 internal resonance response of L-shaped piezoelectric energy harvester under the influence of electrical damping

Nie X.C., Pei S., Tan T., Yan Z.T.*, Yan Z.M.* International Journal of Mechanical Sciences 225 (2022) 107365

52. Origami dynamics based soft piezoelectric energy harvester for machine learning assisted self-powered gait biometric identification

Huang C.L.; Tan T.; Wang Z.M.; Zhang S.M.; Yang F.P.; Lin Z.L.; Yan Z.M.* Energy Conversion and Management 263 (2022) 115720

51. Bioinspired omnidirectional piezoelectric energy harvester with autonomous direction regulation by hovering vibrational stabilization

Wang Z.M., Du Y., Li T.R., Yan Z.M. and Tan T., Energy Conversion and Management 261 (2022) 115638

50. Nonlinear analysis of the internal resonance response of an L-shaped beam structure considering quadratic and cubic nonlinearity

Nie X.C., Gao X., Wang L.Z., Tan T., Yan Z.T.*, Yan Z.M.* and Liu X.P. Journal of Statistical Mechanics: Theory and Experiment, (2022) 023204

49. Hydrodynamic piezoelectric energy harvesting with topological strong vortex by forced separation

Shi G.W., Tan T., Hu S., Yan Z.M.* International Journal of Mechanical Sciences, 223(2022), 107261

48 Band-gap dynamics and programming for low-frequency broadband acoustic metamaterial

Yan Z.M., Xiao H.J., Liu Y.Y., Tan T. Composite Structures, 291 (2022), 115535

47 Coupled vortex-induced modeling for spatially large-curved beam with elastic support

Sun K.J., Nie X.C., Tan T., Yu Z.Y., Yan Z.M.*, International Journal of Mechanical Sciences, 214 (2022), 106903


2021

46  Wind Piezoelectric energy harvesting enhanced by elastic-interfered wake-induced vibration

Yan Z.M., Shi G.W., Zhou J., Wang L.Z., Zuo L., Tan T. Energy Conversion & Management, 249 (2021) 114820

45 Dual-band piezoelectric acoustic energy harvesting by structural and local resonances of Helmholtz metamaterial

Li T.R., Wang Z.M.,  Xiao H.J., Yan Z.M., Yang C., Tan T.* Nano Energy, 90 (2021) 106523.

44 Nonlinear broadband piezoelectric vibration energy harvesting enhanced by inter-well modulation

Wang Z.M., Li T.R., Du Y.,Yan Z.M., Tan T.* Energy Conversion & Management, 2021, 246 (2021) 114661

43 A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design

Wang Z.M., Du Y., Li T.R., Yan Z.M., Tan T.* Applied Energy, 303 (2021) 117577.

42 Piezoelectric autoparametric vibration energy harvesting with chaos control feature

Tan T., Wang Z.M., Zhang L., Liao W.H., Yan Z.M.* Mechanical Systems and Signal Processing, 2021, 161: 107989

41 Environment coupled piezoelectric galloping wind energy harvesting.

Tan T., Zuo L., Yan Z.M.*, Sensors and Actuators A, 2021:323,112641.

40. Hydrokinetic piezoelectric energy harvesting by wake induced vibration

Zhao D.L., Zhou J., Tan T., Yan Z.M.*, Sun W.P., Yin J.L., Zhang W.M., Energy, 2021: 220, 119722

39. Metamaterial and Helmholtz coupled resonator for high-density acoustic energy harvesting

 Ma K.J., Tan T.*, Yan Z.M., Liu F.R., Liao W.H., Zhang W.M.* Nano Energy, 2021: 82, 105693


2020

38.Piezoelectric galloping energy harvesting enhanced by topological equivalent aerodynamic design,

Zhao D.L., Hu X.Y., Tan T., Yan Z.M.*, Zhang W.M., Energy Conversion and Management, 2020, 222: 113260.

37. Nonlinear characterization and performance optimization for broadband bistable energy harvester.

Tan T., Yan Z.M., Ma K.J., Liu F.R., Zhao L.C., Zhang W.M.*, Acta Mechanica Sinica, 2020

36. Ultra broadband piezoelectric energy harvesting via bistable multi-hardening and multi-softening.

Yan Z.M., Sun W.P., Hajj M.R., Zhang W.M., Tan T.*. Nonlinear Dynamics, 2020: 100, 1057-1077 (SCI, Q1).

35. Ultra-wideband piezoelectric energy harvester based on stockbridge damper and its application in smart grid

Nie X.C., Tan T., Yan Z.M.*, Yan Z.T.*, Zhang W.M.. Applied Energy, 2020: 267, 114898.
34. Energy harvesting from iced-conductor inspired wake galloping
Yan Z.M., Wang L.Z., Hajj M.R., Yan Z.T., Sun Y., Tan T.*. Extreme Mechanics Letters, 2020, 35: 100633 (SCI, Q1)
33. Piezoelectromagnetic synergy design and performance analysis for wind galloping energy harvester.
Tan T., Hu X.Y., Yan Z.M.*, Zou Y.J., Zhang W.M.. Sensors and Actuators A, 2020, 302: 111813. (SCI, Q2)

2019
32. Enhanced low-velocity wind energy harvesting from transverse galloping with super capacitor.
Tan T., Hu X.Y., Yan Z.M.*, Zhang W.M.. Energy, 2019, 187: 115915. (SCI, Q1)
31. Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things
Tan T., Yan Z.M., Zou H.X., Ma K.J., Liu F.R., Zhao L.C., Peng Z.K., Zhang W.M.*. Applied Energy, 2019, 254: 113717. (SCI, Q1)
30. Integration of tapered beam and four direct-current circuits for enhanced energy harvesting from transverse galloping
Wang L.Z., Tan T., Yan Z.M.*, Li D.Z., Zhang B., Yan Z.T.*, IEEE/ASME Transactions on Mechatronics, 2019, 24(5): 2248-2260. (SCI, Q1)
29. Tapered galloping energy harvester for power enhancement and vibration reduction
Wang L.Z., Tan T., Yan Z.M.*, Yan Z.T.*, Journal of Intelligent Material Systems and Structures, 2019, 30(18-19): 2853-2869. (SCI, Q2)
28. Broadband and high-efficient L-shaped piezoelectric energy harvester based on internal resonance
Nie X.C., Tan T., Yan Z.M.*, Yan Z.T.*, Hajj M.R., International Journal of Mechanical Sciences, 2019, 159, 287–305 (SCI, Q1)
27. Low velocity water flow energy harvesting using vortex induced vibration and galloping
Sun W.P., Zhao D.L., Tan T., Yan Z.M.*, Guo P.C., Luo X.Q.,Applied Energy, 2019, 251, 113392 (SCI, Q1)
26. Optimal dual-functional design for a piezoelectric autoparametric vibration absorber
Tan T., Yan Z.M.*, Zou Y.J., Zhang W.M., Mechanical Systems and Signal Processing, 2019, 123: 513–532(SCI, Q1)

2018
25. Nonlinear analysis of galloping piezoelectric energy harvesters with inductive-resistive circuits for boundaries of analytical solutions
Yan Z.M.*, Sun W.P., Tan T., Huang W.H., Communications in Nonlinear Science and Numerical Simulation, 2018, 62:90-116 (SCI, Q1)
24. Nonlinear characterization of the rotor-bearing system with the oil-film and unbalance forces considering the effect of the oil-temperature
Sun W.P., Yan Z.M.*, Tan T., Zhao D.L., Luo X.Q., Nonlinear Dynamics, 2018, 10.1007/s11071-018-4113-5 (SCI, Q1)
23. Nonlinear analysis for dual-frequency concurrent energy harvesting,
Yan Z.M.*, Lei H., Tan T., Sun W.P., Huang W.H., Mechanical Systems and Singal Processing, 2018, 104: 514-535 (SCI, Q1)
22. Passive control of transonic flutter with a nonlinear energy sink
Yan Z.M., Ragab S., Hajj M.R.*, Nonlinear Dynamics, 2018, 91(1):577-590 (SCI, Q1)
21. Energy harvesting from water flow in open channel with macro fiber composite
Sun W.P., Tan T., Yan Z.M.*, Sun W.P., Zhao D.L., Luo X.Q., Huang W.H., AIP advances, 2018, 8, 095107 (SCI, Q3)

2017
20. Broadband design of hybrid piezoelectric energy harvester
Tan T., Yan Z.M.*, Huang W.H., International Journal of Mechanical Sciences 131-132: 516-526, 2017 (SCI, Q1)
19. Optimization and performance comparison for galloping-based piezoelectric energy harvesters with alternating-current and direct-current interface circuits
Tan T., Yan Z.M.*, Lei H., Smart Materials and Structures 26(7): 075007, 2017 (SCI, Q1)
18. Optimization study on inductive-resistive circuit for broadband piezoelectric energy harvesters
Tan T., Yan Z.M.*, AIP advances 7 (3), 035318, 2017 (SCI, Q3)
17. Geometric Nonlinear Distributed Parameter Model for Cantilever-beam Piezoelectric Energy Harvesters and Structural Dimension Analysis for Galloping Mode
Tan T., Yan Z.M.*, Lei H., Sun W.P., Journal of Intelligent Material Systems and Structures, DOI: 10.1177/1045389X17704922, 2017 (SCI, Q2)
16. Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters with inductive-resistive circuits and its application in galloping mode
Tan T., Yan Z.M.*, Smart Materials and Structures 26(3):035062, 2017 (SCI, Q1)
15. Nonlinear characteristics of an autoparametric vibration system
Yan Z.M.*, Taha H.E., Tan T., Journal of Sound andVibration 390, 1-22, 2017 (SCI, Q1)
14. Nonlinear performances of an autoparametric vibration-based piezoelastic energy harvester
Yan Z.M.*, Hajj M.R., Journal of Intelligent Material Systems and Structures 28(2), 254-271, 2017 (SCI, Q2)

2016
13. Analytical solution and optimal design for galloping-based piezoelectric energy harvesters
Tan T., Yan Z.M.*, Applied Physics Letters, 109 (25), 2016 (SCI, Q1)
12. Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters
Tan T., Yan Z.M.*, Hajj M.R., Applied Physics Letters 109(10):101908, 2016 (SCI, Q1)
11. Vibration of a Rectangular Plate Carrying a Massive Machine with Elastic Supports
Wang L.Z., Yan Z.T.*, Li Z.L., Yan Z.M., International Journal of Structural Stability and Dynamics 16 (10), 1550069 , 2016 (SCI, Q2)

2015
10. Energy Harvesting from an autoparametric vibration absorber
Yan Z.M.*, Hajj M.R., Smart Materials and Structures 24 (11), 2015 (SCI, Q1)
9. Effects of Aerodynamics Modeling on Optimum Wing Kinematics of Hovering MAVs
Yan Z.M.*, Taha H.E., Hajj M.R., Aerospace Science and Technology, 45, 39-49, 2015 (SCI, Q1)

2014
8. Geometrically-exact unsteady model for airfoils undergoing large amplitude maneuvers
Yan Z.M.*, Taha H.E., Hajj M.R., Aerospace Science and Technology, 39, 293-306, 2014 (SCI, Q1)
7. Nonlinear characterization of concurrent energy harvesting from galloping and base excitations
Yan Z.M., Abdelkefi A.*, Nonlinear dynamics, 77 (4), 1171-1189, 2014 (SCI, Q1)
6. Piezoelectric energy harvesting from hybrid vibrations
Yan Z.M., Abdelkefi A.*, Hajj M.R., Smart Materials and Structures 23 (2), 025026, 2014 (SCI, Q1)
5. Performance analysis of galloping-based piezoaeroelastic energy harvesters with different cross-section geometries
Abdelkefi A.*, Yan Z.M., Hajj M.R., Journal of Intelligent Materials Systems and Structures 25 (2), 246-256, 2014 (SCI, Q2)

2013
4. Nonlinear dynamics of galloping-based piezoaeroelastic energy harvesters
Abdelkefi A.*, Yan Z.M., Hajj M.R., The European Physical Journal Special Topic 222 (7), 1483-1501, 2013 (SCI, Q2)
3. Temperature impact on the performance of galloping-based piezoeroelastic energy harvesters
Abdelkefi A.*, Yan Z.M., Hajj M.R., Smart Materials and Structures 22 (5), 055026, 2013 (SCI, Q1)
2. Modeling and nonlinear analysis of piezoelectric energy harvesting from transverse galloping
Abdelkefi A.*, Yan Z.M., Hajj M.R., Smart Materials and Structures 22 (2), 025016, 2013 (SCI, Q1)

2012
1. Nonlinear galloping of internally resonant iced transmission lines considering eccentricity
Yan Z.M., Yan Z.T.*, Li Z.L., Tan T., Journal of sound and vibration 331 (15), 3599-3616, 2012 (SCI, Q1)

研究生课程:非线性连续介质力学(秋季)

1.    一种基于自参数动力吸振器的压电能收集器测试装置,中国,ZL201810759838.7,2020.06.09,排序1

2.    一种利用机械振动转换成电能的装置,中国,ZL201810725513.7,2020.07.04,排序1

3.    一种基于动力吸振器的压电能量收集器测试装置,中国,ZL201810682047.9,2020.07.07,排序1

4.    一种压电能收集器测试装置及测试方法,中国,ZL201810290275.1,2020.07.03,排序1

5.    基于风致振动的串错列压电采集器测试装置和测试方法,中国,ZL20191059-139.9,2020.07.14,排序1

6.    基于内共振原理的宽频俘能防振锤装置,中国,CN202010716136.8,2020.07.23,排序1

7.    尾流激振的覆冰形能量采集器,中国,CN202010742224.5,2020.07.29, 排序1

8.    基于声子晶体的可调频声能采集装置,中国,CN202010812642.7,2020.08.13,排序1


2022 上海市力学学会优秀青年学者

2022 硕士国家奖学金 (黄涔凌)

2022 博士国家奖学金(张梁)

2020 学院优秀班主任

2018 国际先进材料协会科学家奖章
2012-2015 中国留学基金委政府奖学金
2015 弗吉尼亚理工大学Liviu Librescu Memorial Scholarship奖学金
2008-2011 优秀研究生、优秀毕业生
2006年,2007年 国家奖学金(两次)
2004-2008 优秀毕业生,重庆市力学竞赛一等奖,科研创新先进个人

版权所有 © 2023 be365体育平台(中国)官方网站下载官方版 - IOS/安卓版 沪交ICP备05053   流量统计

Baidu
sogou