船舶与海洋工程系
办公电话:+86-21-34208426
传真:+86-21-34207058
电子邮件:shwen.xu@sjtu.edu.cn
通讯地址:上海市闵行区东川路800号木兰楼B802B室
个人主页:https://www.researchgate.net/profile/Shengwen_Xu
博士,副研究员,博士生导师
2020年12月—今:学院 | 船舶与海洋工程系 | 副研究员
2016年09月—2020年12月:学院 | 船舶与海洋工程系 | 助理研究员
2014年12月—2015年02月:横滨国立大学 | 交换访问(日本外务省资助)
2011年09月—2016年06月:学院 | 船舶与海洋工程专业 | 博士
2007年09月—2011年07月:华南理工大学 | 船舶与海洋工程专业 | 本科
1. 海洋结构物水动力及运动控制
2. 多模块浮体动力响应特性
3. 海洋结构物结构监测
4. 船体分段制造物量测算与平衡
国际离岸与极地工程学会(ISOPE)海洋技术委员会副主席
国际离岸与极地工程学会(ISOPE)技术委员会委员
国际海洋技术学会(MTS)会员
中国石油学会海洋工程工作部委员
船舶工程编委
中国海洋平台编委
纵向项目(主持):
[8] 重庆市自然科学基金项目,CSTB2022NSCQ-MSX0229,极限海况下浮式结构物动力定位控制方法研究,2022/8-2025/7,在研,主持
[7] 上海市“青年科技启明星计划”,21QC1401000,浮式结构物动力定位推进器偏置减摇机理研究,2021/7-2024/6,在研,主持
[6] 工信部浮式保障平台工程(三期),工信部联装函[2019]357号,温差能开发与深层海水综合利用平台技术研究,2020/1-2023/6,结题,子专题主持
[5] 工信部LNG燃料发电船工程开发项目,工信部联装函[2018]473号,复杂海况下LNG发电系统安全运行研究,2019/1-2022/12,结题,子专题主持
[4] 上海市“一带一路”国际合作项目,19510744800,多模块超大型浮体系统耦合作用机理与作业性能研究,2019/11-2021/10,结题,主持
[3] 海洋工程国家重点实验室研究基金项目,1716,基于实测数据的结构应力反演分析方法研究,2018/1-2019/12,结题,主持
[2] 国家青年自然科学基金项目,51709170,基于时域模拟的船舶动态定位能力分析方法研究,2018/1-2020/12,结题,主持
[1] 上海市“青年科技英才扬帆计划”,17YF1409700,冰区平台动力定位控制方法研究,2017/05-2020/4,结题,主持
纵向项目(参加):
[8] 国家自然科学基金面上项目,51979167,考虑多模块水动力干扰-非均匀海底-连接器-系泊耦合作用的超大型浮体动力响应特性研究,2020/1-2023/12,在研,主要参加者
[7] 上海市自然科学基金,19ZR1426300,三维振荡水翼流场特性和流动控制机理研究,2019/7-2022/6,结题,项目参加者
[6] 国家自然科学基金面上项目,51879161,深远海大长径比立管系统内外流耦合机理研究,2019/1-2022/12,结题,项目参加者
[5] 国家重点研发计划,2018YFC0309704,沉船打捞作业风险控制,2018/8-2021/12,结题,主要参加者
[4] 工信部深水半潜式支持平台研发专项,工信部联装函[2016]546号,平台系泊及靠泊性能研究,2017/1-2019/12,结题,主要参加者
[3] 国家重点研发计划,2016YFC0303405,极地冰区系泊及动力定位系统研究,2016/12-2019/12,结题,主要参加者
[2] 工信部浮式保障平台工程(二期),工信部联装函[2016]22号,系泊定位技术,2016/6-2019/12,结题,主要参加者
[1] 国家重点基础研究发展计划(973计划),2013CB036103,海洋超大型浮体复杂环境响应与结构安全性,2012/9-2017/8,结题,主要参加者
产学研课题:
[6] 某型号船深海动力定位系统定位性能仿真,2022/12-2023/12,在研,主持
[5] XX工程生产决策计划系统开发与测试,2022/6-2023/12,在研,主持
[4] 自升式风电安装船水池模型试验,2022/1-2022/12,结题,主持
[3] 风机耦合动力仿真CTSM、TLDM载荷模块合作开发项目,2020/5-2022/12,结题,主持
[2] 海上运维船动力性能优化研究,2019/1-2019/12,结题,主要参加者
[1] 基于SIMPACK的海上风机仿真能力建设技术合作项目,2018/11-2019/5,结题,主持
1)外文
[44] Huang L., Yang J., Lu W., Xu S., Liu L., Experimental and numerical study of ice loads on a four-legged semi-submersible. Ships and Offshore Structures, 2023, in press
[43] Jiang X., He H., Wang L., Xu S., Wang Y.*, Cooperative consensus control of two semi-submersible platforms connected by a telescopic gangway. Journal of Marine Science and Technology, 2023, 28, 234–247. https://doi.org/10.1007/s00773-023-00921-0
[42] Xu S.*, Station-Keeping System for VLFS. In: Cui W., Fu S., Hu Z. (eds) Encyclopedia of Ocean Engineering. Springer, Singapore, 2021. https://doi.org/10.1007/978-981-10-6963-5_344-1
[41] Xu S.*, Murai M.*, Wang X., Takahashi K., A novel conceptual design of a dynamically positioned floating wind turbine, Ocean Engineering, 2021, 221, 108528. https://doi.org/10.1016/j.oceaneng.2020.108528
[40] Jin H., Zhang H.*, Xu D., Liu C., Xu S., Analytical investigation on wave attenuation performance of a floating breakwater with nonlinear stiffness, Ocean Engineering, 2021, https://doi.org/10.1016/j.oceaneng.2021.110160
[39] He H., Xu S., Wang L.*, Wang X., Dynamic positioning control of surge-pitch coupled motion for small-waterplane-area marine structures, China Ocean Engineering, 2021, 35(4): 598–608. https://doi.org/10.1007/s13344-021-0054-8
[38] Ding J.*, Geng Y., Xu S., Yang W., Xie Z., Experimental study on responses of an 8-module VLFS considering different encounter wave conditions, Marine Structures, 2021, 78, 102959. https://doi.org/10.1016/j.marstruc.2021.102959
[37] Wang Y.*, Yao X., Xu S., Breaking pattern of semi-infinite ice sheets during bending failures against sloping structures, International Journal of Offshore and Polar Engineering, 2021, 31(2): 146–152. https://doi.org/10.17736/ijope.2021.jc797
[36] Liu X., Miao Q., Wang X.*, Xu S., Fan H., A novel numerical method for the hydrodynamic analysis of floating bodies over a sloping bottom, Journal of Marine Science and Technology, 2021, published online. https://doi.org/10.1007/s00773-020-00795-6
[35] Liang M., Xu S., Wang X.*, Ding A., Experimental evaluation of a mooring system simplification methodology for reducing mooring lines in a VLFS model testing at a moderate water depth, Ocean Engineering, 2020, 219, 107912. https://doi.org/10.1016/j.oceaneng.2020.107912
[34] Deng Y., Feng W., Xu S.*, Chen X., Wang B., A novel approach for motion predictions of a semi-submersible platform with neural network, Journal of Marine Science and Technology, 2020. Published online. https://doi.org/10.1007/s00773-020-00759-w
[33] Ding J.*, Xie Z., Wu Y., Xu S., Qiu G., Wang Y., Wang Q., Numerical and experimental investigation on hydroelastic responses of an 8-module VLFS near a typical island, Ocean Engineering, 2020, 214(107841): 1–20. https://doi.org/10.1016/j.oceaneng.2020.107841
[32] Wang Y., Wang X.*, Xu S., Wang L., Ding A., Deng Y., Experimental and numerical investigation of influences of connector stiffness and damping on dynamics of a multi-module VLFS, International Journal of Offshore and Polar Engineering, 2020, 30(4): 427–436. https://doi.org/10.17736/ijope.2020.sh29
[31] Xu S.*, Liu X., Wang X., Deng Y., A novel conceptual telescopic positioning pile for VLFS deployed in shallow water: structure design, China Ocean Engineering, 2020, 34(4): 526–536. https://doi.org/10.1007/s13344-020-0047-z
[30] He H., Wang L.*, Wang X., Li B., Xu S., Energy-efficient control of a thruster-assisted position mooring system using neural Q-learning techniques, Ships and Offshore Structures, 2020, published online. https://doi.org/10.1080/17445302.2020.1780683
[29] Liu X., Wang X., Xu S.*, A DMM-EMM-RSM hybrid technique on two-dimensional frequency-domain hydroelasticity of floating structures over variable bathymetry, Ocean Engineering, 2020, 201(107135): 1–12. https://doi.org/10.1016/j.oceaneng.2020.107135
[28] He H., Wang L.*, Zhu Y., Xu S., Numerical and experimental study on the docking of a dynamically positioned barge in float-over installation, Ships and Offshore Structures, 2020, online: 1–11. https://doi.org/10.1080/17445302.2020.1737452
[27] Xu S., Liang M., Wang X.*, Ding A., A mooring system deployment design methodology for vessels in varying water depths, China Ocean Engineering, 2020, 34(2): 185–197. https://doi.org/10.1007/s13344-020-0018-4
[26] Liu X., Wang X., Xu S.*, Ding A., Influences of a varying sill at the seabed on two-dimensional radiation of linear water waves by a rectangular buoy, Journal of Offshore Mechanics and Arctic Engineering, 2020, 142(041202): 1–12. https://doi.org/10.1115/1.4045913
[25] Wang Y., Wang X. Xu S.*, Wang L., Numerical and experimental investigation of hydrodynamic interactions of two VLFS modules deployed in tandem, China Ocean Engineering, 2020, 34(1): 46–55. https://doi.org/10.1007/s13344-020-0005-9
[24] Xu S., Wang X.*, Yang J., Wang L., A fuzzy rule based PID controller for dynamic positioning of vessels in variable environmental disturbances, Journal of Marine Science and Technology, 2019, published online: 1–11. https://doi.org/10.1007/s00773-019-00689-2
[23] Liang M., Wang X., Xu S.*, Ding A., A shallow water mooring system design methodology combining NSGA-II with the vessel-mooring coupled model, Ocean Engineering, 2019, 190, 106417. https://doi.org/10.1016/j.oceaneng.2019.106417
[22] Liang M., Xu S., Wang X.*, Ding A., Simplification of mooring line number for model testing based on equivalent of vessel/mooring coupled dynamics, Journal of Marine Science and Technology, 2019, published online: 1–16. https://doi.org/10.1007/s00773-019-00664-x
[21] Kou Y., Yang J., Xu S.*, Peng T., Liu J., Wu Z., Structural stress monitoring and fem analysis of the cutting operation of the main bracket of a semi-submersible platform, China Ocean Engineering, 2019, 33(6): 649–659. https://doi.org/10.1007/s13344-019-0062-0
[20] Ji C., Xu S.*, Wang X., Liu X., Conceptual design of a novel telescopic positioning pile for VLFS deployed in shallow water: function verification, International Journal of Offshore and Polar Engineering, 2020, 30(1): 94–104. https://doi.org/10.17736/ijope.2020.jc763
[19] He H., Xu S., Wang L.*, Li B., Mitigating surge-pitch coupled motion by a novel adaptive fuzzy damping controller for a semi-submersible platform, Journal of Marine Science and Technology, 2019, published online: 1–15. https://doi.org/10.1007/s00773-019-00643-2
[18] Xu S., Wang X., Wang L.*, Li B., Tuning parameters sensitivity analysis study for a DP roll–pitch motion controller for small waterplane surface vessels, Journal of Marine Science and Technology, 2019, 24: 565–574. https://doi.org/10.1007/s00773-018-0580-0
[17] Wang Y., Xu S., Wang L.*, Wang X., Motion responses of a catenary–taut–tendon hybrid moored single module of a semisubmersible‑type VLFS over uneven seabed, Journal of Marine Science and Technology, 2019, 24: 780–798. https://doi.org/10.1007/s00773-018-0587-6
[16] Zhou L.*, Gao J., Xu S., Bai X., A numerical method to simulate ice drift reversal for moored ships in level ice, Cold Regions Science and Technology, 2018(152): 35–47. https://doi.org/10.1016/j.coldregions.2018.04.008
[15] Wang L., Yang J.*, Xu S., Dynamic positioning capability analysis for marine vessels based on a DPCAP polar plot program, China Ocean Engineering, 2018, 32(1): 90–98. https://doi.org/10.1007/s13344-018-0010-4
[14] Wang Y., Wang X., Xu S.*, Wang L., Motion responses of a catenary-taut-hybrid moored single module of a semi-submersible very large floating structure in multi-sloped seabed, Journal of Offshore Mechanics and Arctic Engineering, 2017, 140: 031102-1. https://doi.org/10.1115/1.4038501
[13] Xu S., Wang X.*, Wang L., Li X., Investigation of the positioning performances for DP vessels considering thruster failure modes by a novel synthesized criterion, Journal of Marine Science and Technology, 2018, 23:605–619. https://doi.org/10.1007/s00773-017-0496-0
[12] Wang Y., Wang X.*, Xu S., Ding A., Motion response of a moored semi-submersible type single module of a VLFS in multi-slope shallow water, International Journal of Offshore and Polar Engineering, 2017, 27(4):397–405. https://doi.org/10.17736/ijope.2017.sh20 | https://www.onepetro.org/journal-paper/ISOPE-17-27-4-397
[11] Xu S., Wang X. *, Wang L., Li B., Mitigating roll–pitch motion by a novel controller in dynamic positioning system for marine vessels, Ships and Offshore Structures, 2017, 12(8): 1136–1142. https://doi.org/10.1080/17445302.2017.1316905
[10] Xu S., Wang X.*, Wang L., Li B., A dynamic forbidden sector skipping strategy in thrust allocation for marine vessels, International Journal of Offshore and Polar Engineering, 2016, 26(2): 175–182. http://dx.doi.org/10.17736/ijope.2016.jc662 | https://www.onepetro.org/journal-paper/ISOPE-16-26-2-175
[9] Xu S., Li B.*, Wang X., Wang L., A novel real time estimate method of wave drift force for wave feed-forward in dynamic positioning system, Ships and Offshore Structures, 2016, 11(7): 747–756. http://dx.doi.org/10.1080/17445302.2015.1062334
[8] Xu S., Wang L.*, Wang X., Local optimization of thruster configuration based on a synthesized positioning capability criterion, International Journal of Naval Architecture and Ocean Engineering, 2015, 7: 1044–1055. http://dx.doi.org/10.1515/ijnaoe-2015-0073
[7] Xu S., Wang X.*, Wang L., Meng S., Li B., A thrust sensitivity analysis based on a synthesized positioning capability criterion in DPCap/DynCap analysis for marine vessels, Ocean Engineering, 2015, 108:164–172. https://doi.org/10.1016/j.oceaneng.2015.08.001
[6] Xu S., Wang X.*, Wang L., Meng S., Applying bisection method to search the maximum environmental condition in DPCap analysis for marine vessels, International Journal of Offshore and Polar Engineering, 2015, 25(2): 104–111. http://dx.doi.org/10.17736/ijope.2015.jc641 | https://www.onepetro.org/journal-paper/ISOPE-15-25-2-104
[5] Wang L. *, Yang J., He H., Xu S., Su T., Numerical and experimental study on the influence of the setpoint on the operation of a thruster-assisted position mooring system, International Journal of Offshore and Polar Engineering, 2016, 26(4): 423–432. https://doi.org/10.17736/ijope.2016.jc664 | https://www.onepetro.org/journal-paper/ISOPE-16-26-4-423
[4] Xu S., Wang X.*, Wang L., and Li B., Application of bisection method and controller gains database method in dynamic station-keeping capability analysis, ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, St. John’s, Newfoundland, Canada, 2015.5.31-6.5. https://doi.org/10.1115/OMAE2015-41120 (SCI-indexed: WOS:000379706800057)
[3] Xu S., Wang X. *, Wang L., Li B., and Zhou L., Using a simple method for singularity avoidance in thrust allocation for marine vessels, Journal of Ship Mechanics, 2017, 21(9): 1099–1113. https://doi.org/10.3969/j.issn.1007-7294.2017.09.005
[2] Xu S., Wang X. *, Wang L. and Meng S., A comparison of positioning capabilities between vessels with different thruster configurations, Journal of Ship Mechanics, 2016, 20(3): 265–276. https://doi.org/10.3969/j.issn.1007-7294.2016.06.005
[1] Xu S., Wang L. *, Wang X. and Li B., Experimental evaluation on a newly developed dynamic positioning time domain simulation program, Journal of Ship Mechanics, 2016, 20(6): 686–698. https://doi.org/10.3969/j.issn.1007-7294.2016.03.004
2)中文
[32] 赵亮,汪学锋,李欣,刘大辉,王译鹤,徐胜文,波流-碎冰耦合作用下平台动力定位辅助系泊模型试验研究,船舶力学,2023,27(07): 995-1005.
[31] 潘鹏,汪学锋,丁军,刘晓雷,尚勇志,徐胜文,弹性超大型浮体系泊动力响应特性,中国海洋平台,2023,38(02): 57-62.
[30] 翁瑜,邢赢,颜益峰,张志弘,徐胜文,基于液体阻尼器的风机塔架减振特性,中国海洋平台,2023,38(01): 9-14+56.
[29] 康思伟,梁明霄,孙红军,徐胜文,浮式风机基础非对称式系泊系统设计方法,船舶力学,2022,26(11): 1646–1656.
[28] 赵亮,汪学锋,李欣,贺华成,徐胜文,内孤立波载荷作用下钻井船动力定位性能,中国海洋平台,2022,37(05): 37–44+81.
[27] 丁爱兵,汪学锋,徐胜文,变水深地形下半潜式生产生活平台系泊性能,中国海洋平台,2022,37(4): 17–23+30.
[26] 丁爱兵,汪学锋,徐胜文,近岛礁非均匀波浪下超大型浮体系泊试验,实验室研究与探索,2022,41(8): 45–49+116.
[25] 王乾隆,徐胜文*,柳存根,刘晗,基于非支配遗传算法的船舶物量测算及平衡优化,船舶工程,2022,44(3): 132–138.
[24] 刘大辉,赵亮,徐胜文*,陈昱,极限海况下动力定位船舶推力分配推进器饱和协议,船舶力学,2022,26(4): 520–528.
[23] 丁军*,杨伟楠,王思雨,谢卓雨,耿彦超,刘小龙,徐胜文,近岛礁八模块超大型浮体水动力载荷研究,船舶力学,2022,26(3): 353–364.
[22] 赵亮,汪学锋,李欣,徐胜文*,冰载荷作用下半潜式平台动力定位能力分析,中国海洋平台,2022,37(1): 24–29, 42.
[21] 黄铮,肖龙飞,刘雨,徐胜文,寇雨丰*,基于故障树的沉船整体打捞系统失效风险分析,船舶工程,2021,43(8): 175–183.
[20] 丁爱兵*,汪学锋,柳存根,徐胜文,变水深地形下建设平台系泊系统模型试验,实验室研究与探索,2021,40(7): 19–22.
[19] 王永恒,汪学锋,徐胜文*,丁爱兵,多模块超大型浮体柔性连接器刚度参数影响,石油工程建设,2020,46(S1): 145–151.
[18] 赵亮,徐胜文,汪学锋*,纪传鹏,考虑内孤立波的钻井船动力定位能力分析,中国海洋平台,2020,35(5): 35–40, 46.
[17] 赵亮,纪传鹏,颜益峰*,乔薛峰,徐胜文,基于p-y曲线法的风机基础侧向承载力,中国海洋平台,2020,35(4): 19–25.
[16] 邹付兵,徐胜文,寇雨丰*,平英辉,刘俊,半潜式平台大肘板局部切割作业的结构应力监测与分析,船舶工程,2020,42(3): 116–122.
[15] 武卓威,刘俊*,寇雨丰,徐胜文,半潜式平台局部切割模拟及施工支撑方案改进,中国海上油气,2020,32(1): 171–178.
[14] 梁明霄,汪学锋*,徐胜文,丁爱兵,尚勇志,基于系泊静态相似的超大型浮体单模块系泊系统简化,船舶力学,2020,24(1): 49–62.
[13] 刘晓雷,汪学锋*,徐胜文,非均匀海底条件下二维水弹性响应,海洋工程装备与技术,2019,6(增): 383–388.
[12] 丁军*,耿彦超,刘小龙,徐胜文,马小舟,复杂环境条件下超大型浮体水池试验中几个关键技术研究,中国造船,2019,60(3): 67–80.
[11] 纪传鹏,徐胜文,汪学锋*,丁爱兵,刘晓雷,基于p-y曲线法对可伸缩桩侧向承载力的研究,舰船科学技术,2019,41(9): 26–31.
[10] 刘路平,李欣*,徐胜文,吴骁,基于黏聚单元法的抗冰海洋平台与层冰相互作用数值模拟,海洋工程,2019,37(2): 20–28.
[9] 王永恒,汪学锋*,徐胜文,丁爱兵,多模块超大型浮体中连接器刚度对其运动响应的影响,海洋工程,2018,36(4): 11–18.
[8] 刘力宇,王磊*,李博,徐胜文,锚泊辅助动力定位系统锚链及推进器复合失效研究,舰船科学技术,2018,40(7): 73–80.
[7] 刘天枫,王磊*,李博,徐胜文,护舷靠垫影响下的动力定位浮托安装进船工况研究,舰船科学技术,2018,40(5): 56–62.
[6] 徐剑峰,徐胜文,汪学锋*,王磊,丁爱兵,超大型浮体单模块在浅水斜底系泊下的动态响应,舰船科学技术,2018,40(1): 75–80.
[5] 王永恒,王磊*,汪学锋,徐胜文,南海岛礁极浅水下半潜平台锚泊系统数值模拟探究,舰船科学技术,2017,39(1):68–73.
[4] 徐胜文,汪学锋*,王磊,半潜平台推力器失效模式下的动力定位能力分析,船舶力学,2016,20(5):558–565.
[3] 贺华成,王磊*,金鑫,徐胜文,半潜平台锚泊辅助动力定位时域模拟研究,海洋工程,2016,34(5):117–124.
[2] 张嫦利,王磊*,李博,徐胜文,PID 参数对动力定位系统定位精度的影响,实验室研究与探索,2015,34(3):9–12.
[1] 金鑫,王磊*,徐胜文,切换控制在动力定位系统中运用的研究与进展,实验室研究与探索,2014,33(12):12–15, 19.
本科生课程:工程学导论
研究生课程:海洋工程水弹性力学及其在工程中的应用
[15] 徐胜文,梁明霄,汪学锋,丁爱兵,一种基于静态和动态等效的系泊系统锚链简化试验方法,2021.6.2,中国,ZL201810400970.9
[14] 杨建民,徐胜文,李欣,寇雨丰,刘晓雷,基于结构应力监测结果的数值反演分析方法, 2020.9.4,中国,ZL201910036182.0
[13] 徐胜文,汪学锋,王永恒,张铎,丁爱兵,基于抗扭机构的超大型浮体的柔性连接试验装置及原理,2019.12.18,中国,ZL201711041181.2
[12] 汪学锋,丁爱兵,梁明霄,徐胜文,一种应用于浅水支撑定位系统的锥式基座机构,2017.1.20,中国,ZL201710042446.4
[11] 杨建民,彭涛,徐胜文,寇雨丰,纪传鹏,一种频率自适应采集分发方法,2019.7.9,中国,ZL201711104084.3
[10] 杨建民,徐胜文,寇雨丰,肖龙飞,彭涛,梁明霄,一种用于海洋工程的光纤采集分析双备份装置的控制系统,2019.7.9,中国,ZL201611121867.8
[9] 汪学锋,徐胜文,梁明霄,丁爱兵,一种超大型浮式结构物模块间的连接装置,2018.6.19,中国,ZL201610659019.6
[8] 汪学锋,梁明霄,徐胜文,丁爱兵,一种新型浅水支撑定位装置,2017.2.7,中国,ZL201710066783.7
[7] 汪学锋,丁爱兵,徐胜文,梁明霄,一种应用于海洋超大型浮体的新型支撑定位装置,2017.1.19,中国,ZL201710038587.9
[6] 徐胜文,汪学锋,梁明霄,丁爱兵,基于柔性杆的超大型浮式结构物模块的连接装置,2016.8.12,中国,ZL201610663059.8
[5] 汪学锋,徐胜文,王磊,基于动力定位能力综合标准的推力器局部最优配置方法,2017.2.8,中国,ZL201410321100.4
[4] 王磊,徐胜文,金鑫,汪学锋,邱荷珍,基于二分法进行动力定位能力分析的方法,2016.11.7,中国,ZL201410269891.0
[3] 王磊,徐胜文,邱荷珍,汪学锋,张嫦利,基于综合动力定位能力的推力敏感性分析方法,2016.7.26,中国,ZL201410268449.6
[2] 王磊,徐胜文,金鑫,汪学锋,基于动力定位能力玫瑰图的综合分析判断方法,2016.5.11,中国,ZL201410268656.1
[1] 王磊,李博,徐胜文,张涛,采用动态禁止角的动力定位推力分配装置及其分配方法,2015.1.7,中国,ZL201210356674.6
上海市“青年科技启明星计划”,2021
上海市科技进步一等奖(7/15),2020
上海市科技进步二等奖(4/10),2020
中国机械工业科技进步一等奖(4/15),2020
上海市“青年科技英才扬帆计划”,2017